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ABSTRACT 

Background: Short-term exposure to ambient PM2.5 concentrations has been associated with 

increased mortality and morbidity. Determining which sources of PM2.5 are most toxic can help 

guide targeted reduction of PM2.5. However, conducting multicity epidemiologic studies of 

sources is difficult because source-specific PM2.5 is not directly measured and source chemical 

compositions can vary between cities. 

Objectives: We determine how the chemical composition of primary ambient PM2.5 sources 

varies across cities.  We estimate associations between source-specific PM2.5 and respiratory 

disease emergency department (ED) visits and examine between-city heterogeneity in estimated 

associations. 

Methods: We used source apportionment to estimate daily concentrations of primary source-

specific PM2.5 for four US cities. For sources with similar chemical compositions between cities, 

we applied Poisson time-series regression models to estimate associations between source-

specific PM2.5 and respiratory disease ED visits. 

Results: We found biomass burning, diesel vehicle, gasoline vehicle, and dust PM2.5 was similar 

in chemical composition between cities, but PM2.5 composition from coal combustion and metal 

sources varied across cities. We found some evidence of positive associations of respiratory 

disease ED visits with biomass burning PM2.5; associations with diesel and gasoline PM2.5 were 

frequently imprecise or consistent with the null.  We found little evidence of associations with 

dust PM2.5. 

Conclusions: We introduced an approach for comparing chemical compositions of PM2.5 

sources across cities and conducted one of the first multicity studies of source-specific PM2.5 and 
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ED visits.  Across four US cities, among the primary PM2.5 sources assessed, biomass burning 

PM2.5 was most strongly associated with respiratory health.   
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INTRODUCTION 

Many epidemiologic studies have reported positive associations between short-term 

exposure to ambient fine particulate matter air pollution, PM less than 2.5 𝜇𝜇m in aerodynamic 

diameter (PM2.5), and increased mortality and morbidity (Dominici et al. 2006; Samoli et al. 

2013; Stafoggia et al. 2013). PM2.5, which consists of constituents such as metal oxides, sulfate, 

organic carbon (OC), and elemental carbon (EC) (Bell et al. 2007), varies geographically in 

chemical composition depending on its natural and/or anthropogenic generating sources 

(Hackstadt and Peng 2014; Hopke et al. 2006). Individual PM2.5 chemical constituents vary in 

their associations with adverse health outcomes (Krall et al. 2013; Ostro et al. 2008; Sarnat et al. 

2015). Because PM2.5 sources emit mixtures of chemical constituents, source-specific PM2.5 also 

varies in its associations with adverse health outcomes (Ito et al. 2006; Mar et al. 2006; Sarnat et 

al. 2008). Estimated associations between source-specific PM2.5 and health have varied between 

previous studies, which have primarily used data from one city or a few communities (Bell et al. 

2013; Mar et al. 2006; Sarnat et al. 2008). Multicity studies provide the means to fully compare 

estimated associations of source-specific PM2.5 across cities.  Understanding which PM2.5 

sources are most toxic could help inform targeted reduction and possibly regulation of ambient 

PM2.5, which is currently regulated by total mass concentration via the US National Ambient Air 

Quality Standards (NAAQS). 

 Conducting epidemiologic studies of PM2.5 sources is challenging because source-specific 

ambient PM2.5 cannot be directly measured and must be estimated using methods such as source 

apportionment models. Standard source apportionment models estimate source-specific PM2.5 

separately for each ambient monitor using PM2.5 constituent concentrations.  In multicity studies, 

PM2.5 sources estimated separately at each ambient monitor must be matched between monitors, 
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which is difficult because PM2.5 sources can vary between cities in both chemical composition 

and concentration (Ito et al. 2004; Sarnat et al. 2008). For cities located far apart, the chemical 

composition of some PM2.5 sources may vary between cities driven by local differences in 

industry, types of vehicles, or other factors.   

Previously observed city-to-city heterogeneity in PM-health associations (Samet et al. 

2000, Franklin et al. 2007) may be driven by differences in population or exposure 

characteristics, such as susceptibility or air conditioning use respectively, or differences in the 

chemical composition of source-specific PM2.5 between cities.  We can eliminate some of this 

between-city variation by only comparing estimated health effect associations of sources whose 

chemical compositions do not vary substantially between cities.  By restricting our analysis to 

sources with similar chemical composition across cities, we can better compare estimated health 

effect associations of the same exposures, i.e. source-specific PM2.5, across cities. 

While most US studies of source-specific PM2.5 have used data from only one or two 

ambient monitors (Hopke et al. 2006; Sarnat et al. 2008), a few multi-community epidemiologic 

studies of source-specific PM2.5 have been conducted. Bell et al. (2013) estimated source-specific 

PM2.5 using data from five ambient monitors in Massachusetts and Connecticut, though the 

monitors were located in four contiguous counties and likely measured similar sources. Ito et al. 

(2013) estimated source-specific PM2.5 across 64 US cities, but did not quantify how similar 

sources were between cities. While these multicity studies estimated associations between 

source-specific PM2.5 and health, a more comprehensive evaluation of how the chemical 

composition of PM2.5 sources varies across cities is still needed. 

We estimated associations between short-term exposure to source-specific PM2.5 and 

respiratory disease emergency department (ED) visits for four US cities: Atlanta, GA; 
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Birmingham, AL; St. Louis, MO; Dallas, TX. These cities, which are located in the southern and 

midwestern US, likely have some PM2.5 sources that are similar in chemical composition across 

cities, but others may differ because of the presence of different industries, varying meteorology, 

or other factors.  We focused on primary PM2.5 sources, such as traffic and coal combustion that 

emit PM2.5 directly.  Separately for each city, we estimated source-specific PM2.5 and then 

identified those sources with similar chemical compositions across cities. For similar sources, we 

estimated associations between source-specific PM2.5 and respiratory disease ED visits. In this 

study, we demonstrate how source apportionment results can be compared between cities in 

epidemiologic studies of air pollution and we present the first multicity US study of the 

associations between primary source-specific PM2.5 and respiratory disease ED visits. 

METHODS 

Data 

We obtained electronic billing data for respiratory disease ED visits for all ages at acute 

care hospitals in the 20-county Atlanta metropolitan area, the 7-county Birmingham metropolitan 

area, the 8 Missouri and 8 Illinois counties in the St. Louis metropolitan area, and the 12-county 

Dallas metropolitan area. Previous studies described the data collection for Atlanta (Sarnat et al. 

2010) and St. Louis (Sarnat et al. 2015). Using diagnosis codes from the International 

Classification of Diseases 9th Revision (ICD-9), we considered subcategories of respiratory 

diseases including pneumonia [ICD-9 codes 480-486], chronic obstructive pulmonary disease 

(COPD) [491, 492, 496], upper respiratory infection (URI) [460-465, 466.0, 477], and asthma 

and/or wheeze [493, 786.07]. We created a combined category of daily respiratory disease ED 

visits by adding the number of daily ED visits for these subcategories and including additional 

ICD-9 codes for bronchiolitis [466.1, 466.11, 466.19].  We used ED visit data in accordance with 
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our data use agreements with the Georgia Hospital Association, the Missouri Hospital 

Association, the Dallas-Fort Worth Hospital Council Foundation, and selected individual 

hospitals. The Emory University Institutional Review Board approved this study and granted an 

exemption from informed consent requirements, given the minimal risk nature of the study and 

the infeasibility of obtaining informed consent from individual patients for more than 1.8 

million billing records. 

We obtained concentrations for PM2.5 mass and PM2.5 constituents from one urban, 

ambient monitor located in each city for the following time periods: Jefferson Street from 1999-

2009 in Atlanta, North Birmingham from 2004-2010 in Birmingham, Blair Street from 2001-

2007 in St. Louis, and Hinton Street from 2006-2009 in Dallas.  

While daily pollution data were available in Atlanta, data were only available 

approximately every third day in the remaining three cities. To ensure estimated sources more 

closely resembled known PM2.5 sources, our source apportionment models incorporated 

additional data including concentrations of gaseous pollutants and, when available, the 

Community Multiscale Air Quality with Tracers (CMAQ-TR) model (Baek 2009). We obtained 

meteorological data for each city, including temperature and relative humidity, from the National 

Climatic Data Center. 

Source apportionment 

Source apportionment models generally assume that observed PM2.5 constituent 

concentrations X are formed as a linear combination of source profiles Λ, the chemical 

composition of each source, and daily concentrations of source-specific PM2.5 F, plus some 

independent error ε, i.e. 𝑿𝑿 = 𝜦𝜦𝜦𝜦+  𝜺𝜺.  We used an ensemble approach to estimate city-specific 

ensemble-based source profiles (EBSPs). The EBSPs are then used in CMB with gas constraints 
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(CMB-GC) to estimate concentrations of source-specific PM2.5, a process which is described in 

detail elsewhere (Balachandran et al. 2012; Lee et al. 2009). 

To estimate source profiles for each city, the EBSP approach uses a weighted average of 

several source apportionment models. Because of varying information available across cities, we 

used a different set of source apportionment models for each city, including CMB with 

molecular markers (Atlanta and St. Louis), CMB-GC (Marmur et al. 2005) (all cities), the 

CMAQ-TR model (Atlanta, Birmingham, and St. Louis), positive matrix factorization (PMF) 

(Paatero and Tapper 1994) (all cities), and PMF using molecular markers (St. Louis). These 

source apportionment methods have been used in other studies of source-specific PM2.5 and are 

described elsewhere (Maier et al. 2013; Sarnat et al. 2008). By using multiple source 

apportionment methods in each city, we were able to leverage the advantages of each method. To 

account for differences in source-specific PM2.5 between summer and winter months, EBSPs 

were estimated separately for warm and cold seasons using data from July and January.  Two 

months were used because these were the only months where results were available for CMAQ 

and CMB with molecular markers.  

Concentrations of source-specific PM2.5 were estimated separately for each city using 

CMB-GC, which uses gaseous pollutants to improve estimates of source-specific PM2.5 (Marmur 

et al. 2005). The winter EBSPs were used to estimate concentrations of source-specific PM2.5 for 

November through March and the summer EBSPs were used to estimate concentrations for the 

remaining months. Since the same approach (CMB-GC) was used to estimate source 

concentrations for each city, sources with similar EBSPs were compared between cities despite 

incorporating different source apportionment methods.  While secondary PM2.5 sources were not 

the focus of this study, source profiles for secondary sources were also included in the CMB-GC. 
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To assess similarity in the chemical composition of source-specific PM2.5 across cities, 

we compared the proportions of each PM2.5 constituent in each source using normalized root 

mean squared differences (nRMSD) of the EBSPs, normalized by the average range (maximum- 

minimum) within EBSPs for each source (Marzo 2014). We also used correlations to indicate 

whether PM2.5 constituents in each estimated source were linearly associated.  The correlations 

and nRMSD were computed by comparing EBSPs for a particular source between two cities, 

separately for winter and summer EBSPs, and summarizing across pairwise comparisons 

between cities for each season using the average, minimum, and maximum.  To assess similarity 

between EBSPs for each source, we used a 10% cutoff in the maximum nRMSD across pairwise 

comparisons.  

Associations with ED visits 

To estimate associations between short-term exposure to source-specific PM2.5 and 

respiratory disease ED visits, we applied overdispersed Poisson time-series regression models to 

data from each city controlling for potential confounders as in previous studies of PM2.5 and 

cardiorespiratory ED visits (Winquist et al. 2015).  Specifically, we included indicator variables 

for holidays, day of week, season, and the hospitals reporting data for each day. We controlled 

for meteorology using separate cubic polynomials for same day (lag 0) maximum temperature, 

the mean of previous day and two days before (lags 1-2) minimum temperature, and the mean of 

lags 0-2 dewpoint temperature.  We controlled for long-term trends in ED visits using cubic 

splines of time with one degree of freedom per month. Last, we incorporated pairwise interaction 

terms between season and each of maximum temperature, weekdays, and federal holidays. We 

estimated associations separately for each source for single-day exposures at lags 0, 1, 2, and 3. 

Because we did not have daily source-specific PM2.5 concentrations for Birmingham, St. Louis, 
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and Dallas, we could not estimate exposures across multiple days. We scaled the resulting 

relative risks by the median of the city-specific interquartile ranges (IQR) corresponding to each 

source.  We only estimated associations between source-specific PM2.5 and ED visits for those 

sources that had similar chemical compositions across cities, based on the nRMSD.  We 

compared estimated health effect associations across cities using chi-square tests of 

heterogeneity (Kleinbaum et al. 1982; Rothman et al. 1998).   

 The estimated chemical composition of source-specific PM2.5 from source apportionment 

models may not correspond well to the true source chemical composition in each city. We 

explored an alternative approach by estimating health effect associations corresponding to 

individual “tracer” PM2.5 chemical constituents known to be emitted from various PM2.5 sources.  

If estimated associations of source-specific PM2.5 are not consistent with estimated associations 

of tracer PM2.5 constituents, this may indicate that estimated source-specific PM2.5 may not 

correspond well to known PM2.5 sources.  

Sensitivity analysis  

As a sensitivity analysis, we estimated associations separately for subcategories of 

respiratory diseases including pneumonia, COPD, URI, and asthma/wheeze.  To determine 

whether our results were sensitive to the confounders included in our health effects regression 

models, we compared our results to models without product terms, without dewpoint 

temperature, without lag 1-2 minimum temperature, without season, without holidays, and 

without holidays and weekdays. To investigate possible exposure misclassification, we compared 

our analysis of ED visits for patients residing in all counties of the surrounding metropolitan area 

to using only ED visits from patients residing in the county or counties closest to each city 

center, which contained the ambient monitoring site (DeKalb and Fulton County, Atlanta; 
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Jefferson County, Birmingham; St. Louis County and St. Louis City, St. Louis; Dallas County, 

Dallas).  

The EBSPs were derived based on the source apportionment results that were obtainable 

for each city. For example, some source apportionment models, such as CMB with molecular 

markers, require more data than we had readily available in some cities. To determine whether 

our results were sensitive to the varying combinations of source apportionment methods across 

cities, we also estimated source profiles using a standard CMB approach in each city. 

RESULTS 

Source apportionment 

Across four US cities, we identified six primary PM2.5 sources including biomass 

burning, diesel vehicles, gasoline vehicles, dust, coal combustion, and metals, though each 

source was not identified in all cities. We did not identify a coal combustion source in St. Louis 

or a metals source in Atlanta or Dallas, though the remaining sources were present in all four 

cities. The metals source is a composite source representing industrial facilities such as steel 

processing (Lee et al. 2006).  The estimated city- and season-specific EBSPs, which are unitless 

but can be interpreted as the amount (in 𝜇𝜇g/m3) of each constituent per 𝜇𝜇g/m3 of source-specific 

PM2.5, are displayed in the Supplemental Material, Figures S1-S2. We summarized differences in 

EBSPs using N pairwise comparisons between cities for each season, which yielded N 

correlations and N nRMSD for each source (Table 1).  For the EBSPs corresponding to biomass 

burning, diesel vehicles, gasoline vehicles, and dust, the maximum nRMSD across pairwise 

comparisons was less than 10% and their correlations were also close to one, suggesting strong 

similarity in these sources across cities. The EBSPs for coal combustion and metals varied 

between cities, with maximum nRMSD greater than 10% and smaller correlations, and therefore 
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we did not compare their estimated associations with ED visits across cities (Table 1, 

Supplemental Material, Figures S1-S2). 

For each city, we estimated concentrations of source-specific PM2.5 for 3624 days in 

Atlanta, 808 in Birmingham, 728 in St. Louis, and 332 in Dallas. Table 2 shows the average 

concentrations and standard deviations (µg/m3) of source-specific PM2.5 for each city. For 

primary PM2.5 sources, we found the greatest concentrations corresponding to biomass burning. 

Correlations between concentrations of source-specific PM2.5 and PM2.5 mass were generally 

small to moderate (Supplemental Material, Table S1). 

Associations with ED visits 

The average number of daily ED visits for combined respiratory diseases was 361 

(standard deviation = 129) for Atlanta, 59 (27) for Birmingham, 281 (81) for St. Louis, and 455 

(159) for Dallas (Supplemental Material, Table S2). In each city, the majority of daily respiratory 

disease ED visits were for URI.  

Figure 1 shows the estimated relative risks and 95% confidence intervals for an IQR 

increase in PM2.5 mass and PM2.5 from biomass burning, diesel vehicles, gasoline vehicles, and 

dust for single day lags 0 to 3. We did not compare associations across cities for PM2.5 from coal 

combustion or metals because their EBSPs varied substantially between cities (Table 1). For 

PM2.5 mass, associations with respiratory disease ED visits were frequently positive and 

statistically significant across cities, though the lag of greatest association varied between cities.  

For lag 2, the relative risk of respiratory disease ED visits associated with an IQR increase in 

PM2.5 mass was 1.006 (95% confidence interval, 1.001, 1.010) for Atlanta, 1.008 (1.002, 1.014) 

for Birmingham, 1.008 (1.002, 1.014) for St. Louis, and 1.003 (0.993, 1.014) for Dallas. 

Associations for PM2.5 from biomass burning were positive and frequently greater in magnitude 
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than for other sources. The relative risk associated with an IQR increase in lag 2 PM2.5 from 

biomass burning was 1.006 (1.003, 1.010) for Atlanta, 1.008 (0.996, 1.019) for Birmingham, 

1.007 (0.999, 1.016) for St. Louis, and 1.001 (0.989, 1.013) for Dallas.  

For PM2.5 from diesel vehicles and gasoline vehicles, estimated associations were 

inconsistent across cities and lags with many near null associations or associations with large 

standard errors.  Across lags, the estimated associations in St. Louis were more positive for 

gasoline vehicles than diesel vehicles.  Associations with diesel and gasoline vehicles in Dallas 

had larger confidence intervals compared with other sources, which may be explained by the 

relatively low temporal variability of PM2.5 from these sources. Across cities and exposure lags, 

we did not find evidence that PM2.5 from dust was associated with respiratory disease ED visits. 

Using chi-square tests of heterogeneity, we did not find evidence that estimated associations 

differed across cities for any PM2.5 source at any lag. 

We selected tracer constituents to correspond to our identified sources based on Sarnat et 

al. (2008), including potassium for PM2.5 from biomass burning, EC for PM2.5 from diesel 

vehicles, zinc for PM2.5 from gasoline vehicles, and silicon for PM2.5 from dust.  We also 

examined OC, which is emitted by biomass burning, diesel vehicles, and gasoline vehicles, but is 

not associated with dust PM2.5. While none of these constituents are generated solely by the 

specified source categories, they can be used to help interpret the source-specific results.  Tables 

summarizing the data for PM2.5 constituent tracers are included in the Supplemental Material 

(Tables S3-S6), including correlations between source-specific PM2.5 and tracer constituents 

(Table S6).  

For each city, we estimated associations between tracer constituents and respiratory 

disease ED visits in order to assess consistency with the associations observed for source-
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specific PM2.5 (Figure 2). For biomass burning PM2.5, the observed patterns of associations 

across cities and lags were similar to the patterns observed for potassium and OC, which are 

tracers for PM2.5 from biomass burning.  Though we did not observe positive associations for 

diesel vehicles in Atlanta and Birmingham, we found some positive associations between EC and 

ED visits in these cities.  EC, while generally a better tracer for diesel PM2.5, was moderately 

correlated with biomass burning PM2.5 in these cities (0.42 and 0.47 respectively).  There was 

little evidence of associations for zinc, a tracer for gasoline PM2.5, or silicon, a tracer for dust 

PM2.5, consistent with the source-specific results. 

Sensitivity analysis 

We found estimated health effect associations for subcategories of respiratory diseases 

had wider confidence intervals than those for combined respiratory diseases because there were 

fewer daily counts for each subcategory (Supplemental Material Figures S3-S6).  We found 

some evidence of associations between PM2.5 from biomass burning and URI in all cities except 

Dallas, though the lag corresponding to the largest associations varied between cities. 

We found results were mostly consistent across models with varying confounder control, 

though our estimated relative risks were frequently greater in magnitude in models without 

control for weekdays and holidays (results not shown). We did not find that restricting our 

analysis to patients residing in the counties closest to each city center and containing the PM2.5 

monitoring site substantially changed our results (results not shown).  We also did not find our 

estimated health effect associations substantially changed using a standard CMB approach 

compared with the EBSP approach for estimating source-specific PM2.5. 
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DISCUSSION 

In a multicity US study that examined the associations between primary source-specific 

PM2.5 and respiratory disease ED visits, we found some evidence of positive associations across 

cities for PM2.5 from biomass burning. The inconsistency in estimated associations for diesel and 

gasoline vehicles across cities might be driven by the spatial heterogeneity of mobile PM2.5 and 

the placement of monitors relative to roadways in each city.  In addition, the large standard errors 

for PM2.5 from diesel and gasoline vehicles in Dallas are likely driven by the relatively low 

temporal variation in these sources (Table 2).  Associations with PM2.5 from dust were smaller in 

magnitude and frequently consistent with the null across cities. The lags where the associations 

were largest in magnitude varied between cities, which might be driven by between-city 

differences in hospital use.  Between-city differences in estimated health effect associations of 

source-specific PM2.5 could also be driven by differences in their respective populations, 

including air conditioning use or susceptibility (Bell et al. 2009; Ostro et al. 2008), or differential 

exposure error. 

Previous studies have estimated associations between respiratory morbidity and source-

specific PM2.5. Sarnat et al. (2008) did not find evidence of positive associations between 

respiratory disease ED visits and PM2.5 from gasoline vehicles, diesel vehicles, wood smoke, or 

soil in Atlanta, but they used same-day exposure and had a shorter time frame than available in 

this study. Andersen et al. (2007) found PM less than 10 𝜇𝜇m (PM10) from biomass burning was 

associated with increased respiratory hospital admissions in Copenhagen, Denmark. In Atlanta, 

Gass et al. (2015) found positive associations between pediatric asthma ED visits and gasoline 

and diesel PM2.5, which were larger in magnitude than biomass burning PM2.5. Other studies 

have found evidence of associations between respiratory hospitalizations and traffic PM2.5 (Ito et 
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al. 2013) and road dust PM2.5 (Bell et al. 2013), though these studies did not identify biomass 

burning as a source of PM2.5.   

We observed positive associations between biomass burning PM2.5 and respiratory ED 

visits, which corresponded well to observed associations for OC and potassium.   Though OC is 

emitted by biomass burning PM2.5, OC is also associated with mobile PM2.5 including gasoline 

and diesel vehicles, and secondary formation from gaseous emissions. OC consists of many 

organic compounds that could be used to differentiate the sources of OC, such as levoglucosan as 

an indicator of biomass burning; however, we did not have daily speciated OC data available for 

the entirety of this study.  Speciated OC data was used in developing the source profiles used in 

our source apportionment approach (Balachandran et al. 2013) and other previous studies have 

used speciated OC data (Zheng et al. 2007). In general, estimated associations for source-specific 

PM2.5 had more uncertainty than estimated associations for PM2.5 constituents, likely because 

source-specific PM2.5 is estimated and not directly measured. 

We found EBSPs for PM2.5 from biomass burning, diesel vehicles, gasoline vehicles, and 

dust were similar across cities, while greater differences existed for EBSPs for PM2.5 from coal 

combustion and metals (Table 1, Supplemental Material, Figures S1-S2). A previous study of the 

same urban ambient monitors in Atlanta and Birmingham also found the same PM2.5 sources to 

have similar chemical composition between monitors (Lee et al. 2008). Correlations and nRMSD 

are simple tools that can be applied to compare source profiles across cities, however future work 

could develop statistical models that provide a more rigorous framework for comparing 

estimated PM2.5 sources across cities. 

Though source apportionment models have been primarily developed for data from a 

single ambient monitor, two previous studies developed source apportionment models for 
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multiple ambient monitors (Jun and Park 2013; Thurston et al. 2011). These models may not be 

appropriate for multicity epidemiologic studies because they fix source profiles across monitors.  

For example, in our study we found source profiles (EBSPs) for PM2.5 from coal combustion and 

metals varied across cities. 

In source apportionment studies, we commonly estimate source-specific PM2.5, but do not 

directly model the known PM2.5 sources in each city (e.g. factories).  Therefore, some sources 

estimated using source apportionment might not exactly correspond to existing PM2.5 sources. 

Other methods, such as dispersion modeling, can be used to estimate source-specific PM2.5 across 

a community. However, these methods are usually not applied to time-series data and require 

information that may not be available for all communities.  In contrast, source apportionment 

models can be readily applied to time series of PM2.5 constituent concentrations, which are 

measured in most urban areas at ambient monitors. Source apportionment studies can also be 

used to identify groups of PM2.5 chemical constituents that are most harmful to human health to 

help focus future epidemiologic studies on relevant PM2.5 sources. 

In this analysis, we did not propagate uncertainty from estimating source-specific PM2.5 

into our estimated health associations. The EBSP approach provides uncertainties associated 

with estimating source-specific PM2.5 and future work could determine how to best incorporate 

these uncertainties in health effects regression models. Bayesian ensemble-based source 

apportionment (Balachandran et al. 2013; Gass et al. 2015) and fully Bayesian models (Nikolov 

et al. 2007) could also be used to propagate the uncertainty from estimating source-specific 

PM2.5.  

The approach we developed to compare the chemical composition of source-specific 

PM2.5 across cities can be applied to examine city-to-city heterogeneity in source-specific PM2.5 
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and how it might explain city-to-city heterogeneity in health effects of PM2.5 mass.  In our study, 

we did not find that estimated associations for source-specific PM2.5 varied across cities using 

chi-square tests of heterogeneity, though longer time series may be needed to fully examine 

between-city differences.  We were unable to examine city-to-city heterogeneity in estimated 

associations across cities using multilevel models because we were limited to data from four US 

cities. While national-level data on ED visits and source-specific PM2.5 are not readily available, 

future work incorporating such data from additional selected cities will be relevant to addressing 

this objective. 

Our study of source-specific PM2.5 across four US cities was limited by the amount of 

available data.  We had data from one ambient monitor in each city, which did not allow us to 

examine spatiotemporal heterogeneity in PM2.5 mass or PM2.5 constituents across each city.  In 

addition, we only had concentrations of PM2.5 chemical constituents to estimate source-specific 

PM2.5 every third day in Birmingham, St. Louis, and Dallas, which limited our ability to fit 

distributed lag models or models using multiday exposures. Lall et al. (2010) found stronger 

associations for cardiorespiratory hospital admissions using multiday lagged exposures and 

therefore our estimated associations for single day exposures may be smaller in magnitude than 

those associated with multiday exposures.  

PM2.5 constituents have only been collected nationally since 2000 (Environmental 

Protection Agency 2009) and future work may be able to utilize longer time series to resolve 

observed differences in estimated associations between cities. Dallas had a shorter time series of 

data with only 332 days of source-specific PM2.5 spanning 2006-2009, which led to wide 

confidence intervals for the estimated associations.  For Atlanta and Birmingham, where longer 

time series were available, we observed somewhat more consistent results across lags (Figures 1-
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2).  Longer time series in each city would also improve our ability to estimate associations 

between source-specific PM2.5 and ED visits by age group. 

To our knowledge, this is the first multicity study of primary source-specific PM2.5 and 

ED visits. While larger, national-level studies are necessary to inform future NAAQS, we have 

provided a framework for comparing estimated source-specific PM2.5 between cities. 

CONCLUSIONS 

In this multicity study of the associations between primary source-specific PM2.5 and 

respiratory disease ED visits, we found some evidence of positive associations across all cities 

with PM2.5 from biomass burning. Associations for PM2.5 from diesel and gasoline vehicles 

sources were less consistent across cities and lags, which could be driven by the spatial 

heterogeneity of the sources. There was little evidence of associations for PM2.5 from dust. We 

found that PM2.5 from coal combustion and metal sources varied in chemical composition across 

cities, which presents challenges for comparing estimated health effect associations between 

cities.  Our approach provides an analytic framework for multicity studies of PM2.5 sources to 

determine those sources most associated with adverse health outcomes and to help inform 

targeted reduction of ambient PM2.5. 
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Table 1: A comparison of ensemble-based source profiles (EBSPs) for warm and cold seasons 

for Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX.  

Source of PM2.5 Number of 

citiesa 

Correlationb nRMSD (%) c Pairwise 

comparisonsd 

Biomass burning 4 0.99 (0.97, 1.00) 4.20 (2.04, 6.35) 12 

Diesel vehicles 4 1.00 (1.00, 1.00) 2.30 (1.44, 3.66) 12 

Gasoline vehicles 4 1.00 (1.00, 1.00) 2.10 (0.93, 3.54) 12 

Dust 4 1.00 (0.99, 1.00) 2.52 (1.20, 4.26) 12 

Coal combustion 3 0.69 (0.48, 0.98) 23.80 (11.45, 30.65) 6 

Metals 2 0.67 (0.59, 0.74) 38.77 (37.46, 40.08) 2 

aNumber of cities where each source was identified. 
bAverage (minimum, maximum) correlation between EBSPs across cities for each season. 
cAverage (minimum, maximum) percent normalized root mean squared difference (nRMSD) 
comparing EBSPs across cities for each season. 
dNumber of pairwise comparisons made for EBSPs between cities for each season.   
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Table 2: Average (standard deviation) concentration and median of city-specific interquartile 

ranges (IQR) in µg/m3 for PM2.5 mass and primary source-specific PM2.5 for 4 US citiesa.   

Pollutant Atlanta Birmingham St. Louis Dallas IQR 

PM2.5 mass 15.55 (7.82) 17.00 (9.25) 13.56 (7.07) 10.71 (4.62) 9.16 

Biomass burning 1.60 (1.17) 1.05 (1.04) 1.31 (0.95) 1.36 (0.95) 0.95 

Diesel vehicles 1.19 (1.16) 1.02 (1.32) 0.72 (0.80) 0.30 (0.52) 1.11 

Gasoline vehicles 1.01 (0.94) 0.70 (0.75) 1.11 (0.61) 0.48 (0.38) 0.72 

Dust 0.43 (0.44) 0.60 (0.72) 0.46 (0.69) 0.65 (1.08) 0.33 

Coal combustion 0.13 (0.12) 0.23 (0.30)  0.01 (0.02) 0.13 

Metals  0.64 (0.57) 0.23 (0.24)  0.43 

aAvailable days of source-specific PM2.5 were 3624 for Atlanta, GA; 808 for Birmingham, AL; 
728 for St. Louis, MO; and 332 for Dallas, TX. 
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FIGURE LEGENDS 

 

Figure 1. Estimated relative risks of respiratory disease ED visits for interquartile range increases 

(IQR) in PM2.5 mass and source-specific PM2.5 using single day exposure lags 0 to 3 for Atlanta, 

GA; Birmingham, AL; St. Louis, MO; and Dallas, TX.  

 

Figure 2. Estimated relative risks of respiratory disease ED visits for interquartile range increases 

(IQR) in selected tracer PM2.5 constituents using single day exposure lags 0 to 3 for Atlanta, GA; 

Birmingham, AL; St. Louis, MO; and Dallas, TX.  Tracers were selected as potassium (K) for 

biomass burning PM2.5, EC for diesel PM2.5, zinc (Zn) for gasoline PM2.5, silicon (Si) for dust 

PM2.5, as well as OC for both mobile and burning PM2.5. 
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Figure 1. 
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Figure 2. 
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